Public release date: 16-Oct-2013
[
| Share
]
Contact: Hannah Johnson
hannah.johnson@bristol.ac.uk
44-117-928-8896
University of Bristol
For decades, it was thought that our skeleton and all its characteristic bony tissues originated in the predators, known as 'conodonts'. However new research, led by the University of Bristol and published today in Nature, shows that they were evolutionary copy-cats who evolved tooth-like structures and tissues independently of other vertebrates. The origin of our skeleton is to be found in the armour of our mud-slurping ancestors who evolved bony armour to protect themselves from such predators.
Palaeontologists from Bristol, Peking University and the US Geological Survey collaborated with physicists from Switzerland to study the tooth-like skeleton of conodonts using high energy X-rays at the Swiss Light Source at the Paul Scherrer Institut in Switzerland. They showed that the tooth-like structures found in the mouths of conodonts evolved within their own evolutionary lineage, rather than in an ancestor shared with other vertebrates.
Lead author, Duncan Murdock of the University of Bristol said: "We were able to visualise every tissue, cell and growth line within the bony teeth, allowing us to study their development. We compared the tooth-like skeleton of conodonts to that of their 'paraconodont' ancestors and to teeth in living vertebrates, demonstrating that the tooth-like structure of conodonts was assembled through evolutionary time independently of other vertebrates."
Co-author, Professor Philip Donoghue of the University of Bristol's School of Earth Sciences said: "This removes a key piece of evidence from the hypothesis that teeth evolved before the skeletal armour, and suggests that the common ancestors of conodonts and other vertebrates likely lacked a mineralized skeleton. Rather, it seems that teeth evolved from the armour of our meek filter-feeding ancestors."
###
This work was funded by the Natural Environment Research Council and the Paul Scherrer Institut.
Notes to editors
Paper
'The origin of conodonts and of vertebrate mineralized skeletons' by Murdock, D. J. E., Dong, X.-P., Repetski, J. E., Marone, F., Stampanoni, M. and Donoghue, P. C. J. in Nature
Images
A zip file of images and videos is available for download at the link below (link expire Weds 23 Oct)
https://fluff.bris.ac.uk/fluff/u3/glxdm/r4Bo_kxL7mX8glsvYv5fGwH4S/
Please note: all images are for single use only to illustrate this press release and are not to be archived. Please credit the copyright holder DJE Murdock.
Contacts
Professor Philip Donoghue
07598 189 545
phil.donoghue@bristol.ac.uk
Duncan Murdock
07817 587 047
duncan.murdock@bristol.ac.uk
[
| Share
]
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Public release date: 16-Oct-2013
[
| Share
]
Contact: Hannah Johnson
hannah.johnson@bristol.ac.uk
44-117-928-8896
University of Bristol
For decades, it was thought that our skeleton and all its characteristic bony tissues originated in the predators, known as 'conodonts'. However new research, led by the University of Bristol and published today in Nature, shows that they were evolutionary copy-cats who evolved tooth-like structures and tissues independently of other vertebrates. The origin of our skeleton is to be found in the armour of our mud-slurping ancestors who evolved bony armour to protect themselves from such predators.
Palaeontologists from Bristol, Peking University and the US Geological Survey collaborated with physicists from Switzerland to study the tooth-like skeleton of conodonts using high energy X-rays at the Swiss Light Source at the Paul Scherrer Institut in Switzerland. They showed that the tooth-like structures found in the mouths of conodonts evolved within their own evolutionary lineage, rather than in an ancestor shared with other vertebrates.
Lead author, Duncan Murdock of the University of Bristol said: "We were able to visualise every tissue, cell and growth line within the bony teeth, allowing us to study their development. We compared the tooth-like skeleton of conodonts to that of their 'paraconodont' ancestors and to teeth in living vertebrates, demonstrating that the tooth-like structure of conodonts was assembled through evolutionary time independently of other vertebrates."
Co-author, Professor Philip Donoghue of the University of Bristol's School of Earth Sciences said: "This removes a key piece of evidence from the hypothesis that teeth evolved before the skeletal armour, and suggests that the common ancestors of conodonts and other vertebrates likely lacked a mineralized skeleton. Rather, it seems that teeth evolved from the armour of our meek filter-feeding ancestors."
###
This work was funded by the Natural Environment Research Council and the Paul Scherrer Institut.
Notes to editors
Paper
'The origin of conodonts and of vertebrate mineralized skeletons' by Murdock, D. J. E., Dong, X.-P., Repetski, J. E., Marone, F., Stampanoni, M. and Donoghue, P. C. J. in Nature
Images
A zip file of images and videos is available for download at the link below (link expire Weds 23 Oct)
https://fluff.bris.ac.uk/fluff/u3/glxdm/r4Bo_kxL7mX8glsvYv5fGwH4S/
Please note: all images are for single use only to illustrate this press release and are not to be archived. Please credit the copyright holder DJE Murdock.
Contacts
Professor Philip Donoghue
07598 189 545
phil.donoghue@bristol.ac.uk
Duncan Murdock
07817 587 047
duncan.murdock@bristol.ac.uk
[
| Share
]
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Source: http://www.eurekalert.org/pub_releases/2013-10/uob-sti101113.php
Similar Articles: Tony Gonzalez Joseph Gordon-Levitt constitution day blobfish Wally Bayola scandal
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.